
PGCAP Module 3 Summative Assignment

David Paredes
Atomic and Molecular Physics

Department of Physics
Durham University

1 Introduction

When a postgraduate student enters the department of Atomic and Molecular Physics,
one of his first tasks is to attend the Graduate course, which will train him/her in the
most basic skills and knowledge necessary to undergo the research they are presented
with. This course aims to fill in the gaps, and most students will find particular areas
in which their own training might surpass the content of the course. Still, this course
is very important to bring the students up to speed, to obtain a common ground from
which to start diversifying their own research.

In the course, students are asked to solve some problems which, in some cases, involve
the use of a computer; however no formal training on computing is given within the
course1. These tasks can range from analysing large sets of data, solving differential
equations, plot solutions to certain equations, etc., and some of them might require the
use of a computer. Little or no guidance is provided on how to undertake these, mainly
to avoid constraining the students on a particular tool or method.

During their research they are confronted by similar problems but within a more
complex context. Some students realise that they require learning how to program in
order to solve some problems more efficiently However, learning how to program is a
complicated task [1], and most students spend a substantial amount of time learning a
programming language and understanding its capabilities.

We wanted to design a programming course, based on the Python language, to be
used at the graduate level in the Atomic and Molecular Physics department. Python
is a successful programming language: it is rapidly becoming one of the most popular
introductory teaching languages in the world [2], partly due to its emphasis on code
readability ; it is consistently ranked amongst the most popular programming languages
[3], and it is used by many large organisations [4]. It is a scripting language: that
is, a programming language that allows the interpretation (contrary to compilation) of
“scripts” that can also be run, alternatively, line-by-line in the console. One of the
benefits of Python (and other scripting languages) is the possibility to use the console
as the glass-box inside the black box [5]: i.e. a way to evaluate the state of the pro-
gram during execution, and thus avoiding common problems arising from the lack of
knowledge of the state of the system. This is in sharp contrast with other compiled

1Many Physics undergraduate programmes around Europe offer some training on programming. How-
ever, that training is not always thorough, and students are not always able to solve general problems
using their programming language.

1

languages, which do not offer the possibility to debug in real time. Also, Python is free
(contrary to some other proprietary computing packages), and so encouraging students
to use it could reduce the costs associated with software licenses in the department.

Figure 1: Logo of the course

The aim of the course is to lessen efforts that
the students make independently to (re)learn a pro-
gramming language, and to showcase the capabil-
ities of the Python language in solving scientific
problems directly related to their research, thus mo-
tivating students to use it as a general-purpose tool.
The course is intended to provide learners with some
context in which to use Python close to the disci-
pline of Atomic and Molecular Physics. This is done
in two ways: first, identifying situations in which
students are likely to find programming useful; and
second, by providing them with examples that they
can directly re-use in their day-to-day work. There
exist other courses which showcase the capabilities of Python as a scientific tool (see, for
example, the Python Scientific Lecture Notes [6]). These courses, though highly encour-
aged as a reference to improve the technique, lack the specificity we required to motivate
students to use Python in their research.

This document reports the efforts required to implement the course mentioned above.
The implementation of this project has been done in cooperation with Thomas Ogden and
James Keaveney, researchers in the AtMol department. First, we talked to the members
of the department to understand what their requirements and preferences were. Then we
defined the course aims and educational outcomes. We also set down a set of guidelines to
homogenise the different parts of the course. Finally, we started with the implementation
of the course, which can be found in [7]2.

2 Survey

To organise this course, we required input regarding the contents of the course from the
members of the department: postgraduate students, postdoctoral researchers and princi-
pal investigators (PI). To this end, we organised a survey in the department to understand
if this course would gather sufficient audience, and what were the most interesting topics
for the intended audience. After some informal conversations, we arrived at three key
aspects that affected the characteristics of the course.

• Length of the course (short, intensive course; or spread during several weeks)

• Date of the course (during term-time or during the summer period)

• What topics would they find interesting/important

We sent an email to the department and received 19 responses to our email: 9 post-
graduate students, 4 postdoctoral researchers and 6 PIs. The email also prompted infor-
mal conversations with other members in the group and outside of it. In the following

2Once the course is finished, the materials generated will be made public using the MIT license.

2

paragraphs, I summarise the answers from the two distinct target groups (postgraduate
and postdoctoral researchers, and PIs).

2.1 Postgraduate students and postdoctoral researchers

All the correspondents in this category showed interest in the course. Some of this interest
might be explained by considering that during the previous years, some of the members
of the department have been showcasing Python and the possibilities that the language
has.

In terms of length and date, the answers varied wildly, ranging from people who
wanted a short, intensive course at any point in the year, to longer courses, with space
between lectures, during term time. However, one of the answers showed an important
constraint: if the course was done during the summer period, it might clash with people’s
vacations, and it should be avoided if possible.

Regarding the content of the course, the vast majority of the answers came from
sporadic users of Python who wanted to use the language for particular applications,
such as: data analysis, matrix operations, debugging / profiling / optimisation tools,
interfacing Python with scientific instruments, how to transfer and store data in different
formats. Some of these students (specially former Durham undergraduates) had learned
Python as part of their undergraduate courses, but were not confident enough in the
language to use it as an everyday tool.

Outside of the average requirements, shared by the majority of the postgraduate
and postdoctoral researchers, there were some outliers, both at the basic and the ad-
vanced level. In the first group we found people who needed basic training on how to
install the programming environment and who required some advise on the syntax. On
the other end, some people wanted advanced features like GPU programming, multi-
threaded/multiprocessor capabilities of the language, remote data acquisition, and inte-
gration with other languages.

Also, in several occasions, people asked for advice on general concepts like good coding
practices, documentation procedures and version control, both for single-user bookkeeping
and to write programs collaboratively. They also wanted use cases, and information about
common pitfalls and solutions.

2.2 Principal investigators

Contrary to the input obtained from postgraduate and postdoctoral researchers, mostly
in email form, PIs wanted to meet in person to discuss different aspects of the course.
This prompted interesting conversations, and the opportunity to discuss more in depth
the course proposal3.

Some of the principal investigators wanted answers to very specific questions: how
to propagate the single-particle Schrödinger and nonlinear Gross-Pitaevskii equations,
matrix problems, manipulation and diagonalisation, solve the optical Bloch equations,
etc. ; however, most of them were interested in a very generic range of skills: data
analysis, curve fitting, numerical solutions to equations, generation of publication-quality
figures, re-usability, and writing efficient and clear code.

Conversations with some of the PIs suggested that the course should happen either
immediately before or together with the graduate course, so that the students can use

3Some of the PIs were even interested in taking the course once it was developed

3

the acquired knowledge in solving the specific problems set out in the graduate course
homework.

3 Design of the course

After reviewing the input received, we decided to orient the course of students who already
had programming experience, and that were familiar with some of the basic features of
the Python programming language. For those students who lacked this basic training,
we suggested the use of the self-learning materials from the Durham University Physics
Laboratory guide [8]. Students that previously took part in the Durham University
Physics undergraduate programme would only require to review this knowledge, since
they are trained in using Python in Levels 2 and 3 of their degrees4.

Developing programming skills is a complex process that requires many high-level cog-
nitive activities [1, Section 3.3]. Usually, novice learners of programming in the Physical
science limit their learning to the acquisition of surface knowledge (as opposed to deep
learning [9]) because they lack detailed mental models of both the domain of application
and programming and fail to apply relevant knowledge [1]. A typical threshold concept
[10] that appears early on during the learning process is “the notion of the system making
sense of the program according to its own very rigid rules [which is] a crucial idea for
a learner to grasp” [11], which is usually referred to as by the aphorism “ A computer
program does what you tell it to do, not what you want it to do.”

Programs are usually written for a purpose. Literature suggests that students do not
learn holistically, by adding general facts to their knowledge, but rather opportunistically
[1], and programming can be regarded as“an incremental problem-solving process where
strategy is determined by localized problem-solving episodes and frequent problem re-
evaluation” [12]. Therefore, a course based on just technical, abstract aspects would be
counterproductive, since students might not be able to use these technicalities to solve
the problems they are faced with. Also, only a limited amount of learners (those with an
abstract learning tendency [13, 14]) would benefit from the course.

Following this discourse, we structured the course as a set of lectures/use cases with
direct applications in the student’s research: students will find useful to have received
formal training and programming experience in problems that they will have to re-visit
later in their research life. Ideally, these classes should take place during 4 or 5 after-
noon/morning sessions in the week before the graduate course is due to start. These
sessions, each of them spanning 2 hours approximately, should take the form of relatively
short lecture-like demonstration followed by problem solving activities. The initial part
of the sessions would introduce the topic and some of the technical aspects, possibly in
an abstract way. The problem solving part would focus on one or more problems related
to the topic covered during the session. The course structure (mixing small amounts of
lecturing with many use cases) benefits our target audience by contextualising program-
ming.

From the input that we received, we identified four distinct topics where students
might benefit from using Python:

• Input and output of data

• Data analysis

4For newer programmes, this has changed, and the Python courses take place on different Levels.

4

• Numerical methods

• Plotting

These answered the (very practical) questions: how to get data from outside the pro-
gram?, how to generate data?, how to process data?, and how to represent data?. These
questions frame Python as a general-purpose tool to solve problems in both theoretical
and experimental research.

To integrate the initial demonstrating part in each session with the hands-on part of
the class, we developed a series of IPython Notebooks [15]. The IPython notebook “is a
web-based interactive computational environment where you can combine code execution,
text, mathematics, plots and rich media into a single document”. This environment
allowed us to prepare in advance the introductory discourse and some examples that
can be executed, changed and visualised in real time. These notebooks can be shared,
and can be executed locally (if the students have IPython Notebook installed), or they
can be accessed using an online renderer, nbviewer [16]; it is also possible to export
these notebooks as static webpages (to be visualised in a web-browser), or as standalone
python scripts. Using these notebooks allows online access to all the materials of the
course, which could be the basis for an open, self-taught course.

Each of the notebooks focused on a particular, technical problem (for example, a
notebook under the topic “Plotting” focuses on constructing a complex, multi-panel plot,
combining raw data with different fitting curves, and to show the residuals). Some of
these notebooks come with questions and problems showing progressive difficulty at the
end; these should be solvable by simple alterations of the code presented in the notebook.
In the implementation of the course as part of the graduate course, the solution to these
problems would constitute a form of formative assessment, which should be followed by
feedback to the students.

At the end of each topic, a long, complex problem (called quest) was proposed. These
quests present typical problems found during research in the field, and are redacted in an
amenable/narrative way to provide with some “context” for each of the problems. For
example, we can read in the quest of the Input/Output topic: First week here: hopefully
you have done all the bureaucracy required of you, and now you are ready to do some
science. Ready or not, the postdoc you are working with is asking you to get the data they
have been gathering all morning in the coincidences experiment and save it in a format
that makes more sense. [...] Your task is to write a script that converts the data in the
files provided to time tags, and save them in a file called ”output.csv” . . .

These quests form the summative assessment of the course, and enough time would
be given to the students to finish them.

Alongside with these four topics, we wrote some introductory material with general
information about Python and ways to get help, as well as some information regarding
the documentation and commenting of the code. Documenting (and commenting) code
are important topics, as a suitable documentation can help both code re-usability and
collaborative development [17, 18].

Regarding the impact of the course in women, which is an important topic in STEM
subjects, more than 50% of the female members in the department answered the sur-
vey, which indicates that the women in our department were already motivated by the
prospect of such a course. If we consider, however, the impact of the course outside of the
department (when it becomes open to the public), we note that the course structure (mix-
ing small amounts of abstract lecturing, with use cases) has the potential to attract the

5

female audience by appealing to the concreteness of its examples: there are studies that
suggest that women learners value putting computing studies in context [19, Chapter 3];
these studies refer to a broader context than that of computing, and the applications the
field has in the “real” world [20]. However, there is also considerable evidence suggesting
a discrepancy between male and female learning preferences [21], especially regarding
the abstract-concrete dimension of learning (in the framework of Kolb’s learning styles
[13, 14]): studies suggest that women score higher in the concrete side of the continuum,
whereas men tend to score higher in the abstract end.

4 Further work and conclusions

Some of the PIs suggested that the demonstrators acted as experts in solving a real-world
problem. This should demonstrate what the thought process of an expert user of Python
is, giving hints to the students about the important aspects of the problems they will be
faced with. However, one needs to bear in mind that learning by observing an expert is of
limited effectiveness in most contexts [22], so other alternatives should be explored. We
can imagine the expert as guide in a tutorial-like setting for a relatively long time-span,
in which students solve collaboratively a complex problem using Python. If more time
was available, it is an avenue that could be explored further.

In conclusion, we have designed a course which aims to prepare students to use Python
as a general-purpose programming language in the research concerning Atomic and Molec-
ular Physics. First, we surveyed the department to understand what the requirements
and preferences were. Then, we designed a course based on these requirements that was
divided into four distinct topics identified as representative of the kind of research car-
ried out in the department: data input and output, data analysis, numerical methods
and plotting. We used IPython notebooks as a tool to deliver both lecture-like content
and hands-on practice to work on some use cases.

6

5 Appendix: “Intro to Python for Graduate Stu-

dents” course description

5.1 Course aims:

“Intro to Python for graduate students” is a week-long course designed to introduce
the casual Python user to the capabilities of the language in the context of scientific
computing at the graduate level.

It aims to prepare students to use Python as a general-purpose programming lan-
guage in research, to be used both in theoretical and experimental contexts. Tasks like
data taking/handling/analysis, generating publication-quality plots, solving differential
equations,... will be covered, following the standards in the scientific community.

It consists of self-contained topics that focus on different tasks: Input/Output, plot-
ting, data analysis and scientific computation. They can be coursed separately if required,
according to the needs of each particular student. The course is delivered as a series of
worked examples that can be used online or as part of the graduate course in Atomic and
Molecular Physics. An experienced user will guide the students through the sections and
the examples in morning/afternoon long tutorials, to help the students in understanding
the tasks at hand, and support them in the usage of Python.

5.2 Learning outcomes:

By the end of the course, the student should be able to

• know how to install and use the Python environment in their preferred OS

• know where to get information about the programming language, and how to nav-
igate on- and offline manuals;

• identify and produce programs following standards for commenting and style,

• perform simple tasks using Python to help them in their daily scientific routines,

• use Python to generate publication quality plots, with multiple subplots and insets,

• use Python’s numerical packages numpy and scipy to perform numerical calculations
(linear algebra, differential equations, ...),

• recognise possibilities for simple optimisation in their scripts and ways to implement
them,

• get information about the more advanced packages written for Python to solve
quantum mechanical problems (parallelisation, QuTIP,...).

7

References

[1] Anthony Robins, Janet Rountree, and Nathan Rountree. Learning and teaching
programming: A review and discussion. Computer Science Education, 13(2):137–
172, 2003.

[2] Python is now the most popular introductory teaching language at top U.S. Universi-
ties | blog@CACM | Communications of the ACM. http://cacm.acm.org/blogs/blog-
cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-
top-us-universities/fulltext.

[3] TIOBE Software: Tiobe Index. http://www.tiobe.com/index.php/content/

paperinfo/tpci/index.html.

[4] Python Success Stories — Python.org. https://www.python.org/about/success/.

[5] Benedict Du Boulay, Tim O’Shea, and John Monk. The black box inside the glass
box: presenting computing concepts to novices. International Journal of Human-
Computer Studies, 51(2):265 – 277, 1999.

[6] Python Scientific Lecture Notes Scipy lecture notes. https://scipy-lectures.

github.io/.

[7] Intro to Python for graduate students. http://nbviewer.ipython.org/url/

www.ambages.es/pythonCourse/python_notebooks/Python%20Course%20-%

20Overview%20Page.ipynb.

[8] Python Resources, Durham University Physics Laboratory Guide. http://labs.

physics.dur.ac.uk/computing/resources/python.php.

[9] J Biggs. Aligning teaching for constructive learning. Higher Education Academy
online resource. Last accessed 1/10/12.

[10] Jan H. F. Meyer and Ray Land. Threshold concepts and troublesome knowledge
(2): Epistemological considerations and a conceptual framework for teaching and
learning. Higher Education, 49(3):373–388, April 2005.

[11] Benedict Du Boulay. Some difficulties of learning to program. Journal of Educational
Computing Research, 2(1):57–73, 1986.

[12] Simon P. Davies. Models and theories of programming strategy. Int. J. Man-Mach.
Stud., 39(2):237–267, August 1993.

[13] D.A. Kolb. Experiential learning: experience as the source of learning and develop-
ment. Prentice Hall, Englewood Cliffs, NJ, 1984.

[14] Higher Education Academy. Learning Styles. http://84.22.166.132/

learning-and-teaching-theory-guide/learning-styles.html. Accessed
1/10/2013.

[15] The IPython notebook. http://ipython.org/notebook.html.

[16] nbviewer - a simple way to share IPython notebooks. http://nbviewer.ipython.

org/.

8

http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
https://www.python.org/about/success/
https://scipy-lectures.github.io/
https://scipy-lectures.github.io/
http://nbviewer.ipython.org/url/www.ambages.es/pythonCourse/python_notebooks/Python%20Course%20-%20Overview%20Page.ipynb
http://nbviewer.ipython.org/url/www.ambages.es/pythonCourse/python_notebooks/Python%20Course%20-%20Overview%20Page.ipynb
http://nbviewer.ipython.org/url/www.ambages.es/pythonCourse/python_notebooks/Python%20Course%20-%20Overview%20Page.ipynb
http://labs.physics.dur.ac.uk/computing/resources/python.php
http://labs.physics.dur.ac.uk/computing/resources/python.php
http://84.22.166.132/learning-and-teaching-theory-guide/learning-styles.html
http://84.22.166.132/learning-and-teaching-theory-guide/learning-styles.html
http://ipython.org/notebook.html
http://nbviewer.ipython.org/
http://nbviewer.ipython.org/

[17] Lutz Prechelt, Barbara Unger, and Michael Philippsen. Documenting design patterns
in code eases program maintenance. In In Proc. ICSE Workshop on Process Modeling
and Empirical Studies of Software Evolution, pages 72–76, 1997.

[18] Dani Nordin. Documenting for end users and the production team. In The Definitive
Guide to Drupal 7, pages 221–226. Apress, January 2011.

[19] Jane Margolis and Allan Fisher. Unlocking the Clubhouse: Women in Computing.
MIT Press, 2003.

[20] Jill Dimond and Mark Guzdial. More than paradoxes to offer: Exploring motivations
to attract women to computing. Georgia Institute of Technology Technical Report,
2008.

[21] Sadan Kulturel-Konak, Mary Lou D’Allegro, and Sarah Dickinson. Review of gender
differences in learning styles: Suggestions for STEM education. Contemporary Issues
in Education Research (CIER), 4(3):9–18, March 2011.

[22] M. T. Chi. Learning from observing an experts demonstration, explanations, and
dialogues. Expertise and skill acquisition: The impact of William G. Chase, pages
1–28, 2013.

9

	Introduction
	Survey
	Postgraduate students and postdoctoral researchers
	Principal investigators

	Design of the course
	Further work and conclusions
	Appendix: ``Intro to Python for Graduate Students'' course description
	Course aims:
	Learning outcomes:

