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I. MOTIVATION

Our experiment consist on an EIT scheme to probe a
singly blockaded sphere of 87Rb atoms. This would allow
for the creation of a single photon source or the implemen-
tation of a CNOT quantum gate.
Previous experiments have shown that long range dipole-

dipole interactions between atoms have effects on the prop-
agation of light through a cloud of atoms [1]. That exper-
iment was performed with an atom cloud that was bigger
than the blockade radius of the atoms being probed.
Our setup tries to remedy this by using a smaller cloud

confined in a tightly focussed optical dipole with a volume
smaller than 100µm3. As we load directly from a MOT
into the dipole trap and the dipole trap volume is small,
we suffer from poor loading (less than 100 atoms/s). The
probe time, which was of the order of tens of microseconds,
was enough to lose all the atoms from the trap, as we have
to shut down the dipole beam while probing.
Therefore, we searched for solutions to the loading prob-

lem. Ultimately, we arrived at a solution which has shown
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to be satisfactory so far: probe repeatedly for shorter peri-
ods of time and alternate those periods with periods where
the dipole trap is ON to avoid losing the atoms.
However, we thought for a while on other solutions to

the poor loading. Given the successful application of Bot-
tle Beam (BoB) traps [2, 3], we decided that making one
of these traps might help us. A BoB trap (see Figure 1)
creates a region in space with zero electric field completely
surrounded by regions of higher intensity. The particles are
then trapped in the regions where the electric field is prac-
tically zero, and thus the light shifts that they experiment
are negligible.

FIG. 1: Schematic view of a Bottle Beam (BoB) trap. It
consists on a region of space (a) with no electric field

completely surrounded by regions of higher intensity (b). The
particles would be trapped in region (a).

It is possible to obtain a BoB trap with a dark spot in
the focus of a lens if we apply a π phase difference to
half of the power of the a Gaussian beam under adequate
conditions. This phase difference makes the beam cancel
out in the axis of propagation.
One of the problems that we wanted to target is the

difficulty of aligning probe and trap beams simultaneously
at such small scales (less than 1µm). Therefore, we de-
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II BOTTLE BEAM TRAP

cided that the best way to have at least axial alignment is
to couple both beams through the same monomode fiber.
How can we create a BoB trap at the trapping frequency

while leaving the probe beam unchanged, when both beams
have to follow the same optical path? We can design a
“magic number” waveplate that applies a π phase shift to
part of the trap beam, while the optical path length of the
probe beam varies only by integer numbers of the wave-
length.
In section II we will briefly describe dipole trapping of

neutral atoms and in III the discussion on the wave plate
design to perform Bob trapping will be exposed. Section
IV will briefly explain the background behind the Fourier
propagation method and the implementation in Python. I
will present the results in section V, and the discussion will
follow in section VI.

II. BOTTLE BEAM TRAP

One of the ways to trap neutral atoms [4] is via dipole
traps. Dipole traps rely on the dipolar force created by
far detuned electromagnetic fields. The following (brief)
discussion on the crucial expressions for the dipole traps
is taken from [5]. Please, refer to it for more complete
information.
If we assume (using a semi-classical model) that an atom

is placed in laser light with electric field ~E, it induces an
atomic dipole moment ~p that oscilates at the driving fre-
quency ω. The amplitude of both quantities are related by
the complex polarizability, α, as follows:

p = αE. (1)

Here, the (complex) polarizability usually depends on the
driving frequency, α = α(ω). The interaction potential
induced by the oscillating dipole moment is then given by

Udip = −
1

2

〈
~p ~E
〉

= −
1

2ε0c
<(α)I, (2)

where <(α) is the real part of the susceptibility and I is the
light power. Therefore, the force on the dipole will depend
on the gradient of the light power, F = −∇Udip ∼ ∇I.
Another important quantity, related to the imaginary part
of the polarizability, =(α), is the power absorbed by the
oscillator from this driving field,

Pabs =
〈
~̇p ~E
〉

=
ω

ε0c
=(α)I, (3)

where we can consider the power absorbed to be re-emitted
as dipole radiation. If this is the case, we can obtain the
photon scattering rate as

Γsc =
Pabs
h̄ω

(4)

The polarizability for a two level system can be calculated,
classically or semiclassically, as an oscillating field driving
an electron, and the only difference is whether we consider
saturation effects or not. The classical formula reads

α = 6πε0c
3 Γ/ω20
ω20 − ω2 − i (ω3/ω20) Γ

(5)

In both cases, the polarizability takes into account the
damping rate of the electron: in the classical picture, Lar-
mor’s formula applies; however, in the semiclassical ap-
proach one needs to take into account the dipole matrix
element between the ground and excited state. This pro-
vides an on-resonance damping rate

Γ =
ω30

3πε0h̄c3
|〈e |µ| g〉|2 . (6)

For dipole trapping, where we are interested in the far-
detuned regime where we find low saturation and low scat-
tering rates ( Γsc � Γ), equation (5) holds.
If we define the detuning as ∆ ≡ ω − ω0, the condi-

tion |∆| � ω0 allows us to apply the rotating wave ap-
proximation, which neglects fast oscillating terms in the
Hamiltonian. Additionally, setting the condition of negli-
gible saturation, we can obtain exressions for both dipole
potential and scattering rate:

Udip(~r) =
3πc2

2ω30

Γ

∆
I(~r), (7)

Γsc(~r) =
3πc2

2h̄ω30

(
Γ

∆

)2
I(~r). (8)

Two points can be emphasized on these equations:

• The sign of the detuning determines the repulsive or
attractive nature of the dipole force. For red detuned
(∆ < 0) dipole traps, the interaction attracts atoms
to the maxima of the light field, whereas a blue de-
tuned (∆ > 0) potential repels the atoms out of the
maxima.

• The scaling of potential and scattering rate with light
intensity and detuning makes convenient working in
a situation with large detunings and high optical in-
tensities.

In order to implement a far off-resonance, red detuned
trap (FORT), one could use a tightly focused Gaussian
which will provide a unique intensity maximum where the
atoms will be attracted to.
This technique, however, has some disadvantages.

Quantum-mechanically speaking, if we place an atom in
a region where there are electromagnetic fields, the energy
levels will be shifted by the interaction between atom and
field. The expression for these light shifts or ac Stark shifts
can be obtained as a second-order perturbation in the field
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III WAVE PLATE DESIGN

(they are first order in the light intensity), and in the case
of a two-level atom it reduces to

∆E = ±
|〈e |µ| g〉|2

∆
|E|2 = ±

3πc2

2ω30

Γ

∆
I (9)

for the ground and excited state (plus and minus sign, re-
spectively).
The light shifts associated with this intensity maxima

might be undesirable. It might, then, be possible to trap
atoms in a region of space surrounded by intensity maxima
using blue detuned light.
In our case, we are interested in creating a trap that pro-

vides zero intensity in some volume and then steep “walls”
of light. This will constitute a “dark spot” in a beam of
light.
Several implementations produce “dark spots” to trap

atoms. All of them rely on the cancellation of the power
produced at some point along the axis of propagation of
a beam. Amongst them, there are many ways to obtain a
dark spot using a single beam of blue-detuned light:

• Interferometer [2, 6]: Some combine two Gaussian
beams with equal power at the focus with a π phase
shift using a Mach-Zehnder interferometer with a
telescope in one of the arms, but it cannot be used
easily in our case as it requires additional alignment.

• Near-field features [7]: It is possible to obtain field
minima in the near field produced by scattering from
a circular apperture to trap atoms. However, these
traps are usually very close to the aperture which
produces them, and they can affect highly excited
Rydberg states.

• Holographic plates [8]: They are used to tailor the
shape of the beam at the focal spot of a lens. In
principle, this is the most flexible method, but we
are interested in obtaining a trap that is aligned “by
default” in the longitudinal direction by having both
probe and trap beams pass through the same fiber.
These holographic traps would provide a dark spot
in both probe and trap beam, which is not suitable
for our purposes.

• Segmented wave plate [9]: They exploit the radial
symmetry of a Gaussian beam to obtain one of such
traps. They apply a π phase difference to an inner
circular region of a Gaussian beam with respect to
an outer annulus using a segmented quarter wave
plate whose central region is rotated by 90◦. The
wave plate they use is quite big (several cm), and
the losses produced by the cut of the wave plate
are negligible. However, these sizes are not practical
for our experiment, thus avoiding the cuts would be
important.

Furthermore, the constraints in our setup are

• Both trap and probe beams should follow the same
optical path. This implies, amongst other things,
that both need to travel through the same fiber. In
this way, transversal alignment is a default and lon-
gitudinal alignment will depend on the dispersive fea-
tures of the optical elements before the trap.

• The trapping region should be smaller than the dipole
blockade radius. In our experiment, this blockade is
of the order 5-10 µm.

If we follow the wave plate technique, it is not unfeasible
to design one that provides a dark spot in the trapping
beam while leaving the probing beam undisturbed. The
main problem is to tailor the length such that the probe
beam spans an integer number of wavelengths inside the
medium, whereas the trapping light spans a half-integer
number of them.
In the next section we discuss the design constraints and

the solutions we arrived at.

III. WAVE PLATE DESIGN

To create a wave plate that produces a BoB trap at
one wavelength and leaves other wavelength almost undis-
turbed (speaking about phase relationships) it is required
that this plate provides different phase shifts in different
regions for the trapping light but not for the probe light.
In the case of the segmented waveplate, the outer and

inner regions are shifted by ±π/2, where the different signs
account for the different orientations of the segments in
the waveplate. These two, when combined in the trap
beam, would provide a π phase shift that cancels the con-
tributions from the outer and inner regions when the beam
is focused. However, given the small sizes of our beams
to begin with, a cut in a waveplate would produce non-
negligible losses which we cannot afford. Therefore, a so-
lution would be to create a waveplate with a stepped profile
[see figure] that provides a π phase shift to the trapping
light in the region of the feature, be it a bump or a well.
The rest of the waveplate provides an homogeneous phase
shift across its section, thus not disturbing either of the
beams.
Given a beam with a certain wavelength λ, the phase

change φ inside a medium of wavelength-dependent re-
fractive index n(λ) and thickness z is

φ =
2πn(λ)z

λ
(10)

If that medium is embedded in another one (let’s say, air)
with refractive index n0, then the phase difference between
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FIG. 2: Two different waveplate profiles. Both give a π phase
shift between the inner and outer regions of the beam for an

appropriately chosen feature length L.

a beam propagating outside as compared to the beam prop-
agating inside is

∆φ =
2π (n(λ)− n0) z

λ
(11)

We require a 0 mod (2π) phase shift for a probe beam
with wavelength λp, and a π mod (2π) shift for the trap-
ping wavelength, λt . Therefore, if mp, mt are integer num-
bers, the equations for both wavelengths read

mp2π =
2π (n(λp)− n0) z

λp
(12)

(2mt + 1)π =
2π (n(λt)− n0) z

λt
(13)

If we divide both equations, we obtain:

mp
mt + 0.5

=
(n(λp)− n0)λt
(n(λt)− n0)λp

(14)

Hence, if we decide the wavelength of our probe beam
to be the center of mass of the D2 line of 87Rb,
λ = 780.241 nm, knowing the wavelength dependence of
the refractive index of the material will provide us with all
the possible trapping wavelengths. The number of them is,
of course, infinite, and the trapping wavelength will depend

on mp and mt , which are the number of full-wavelengths of
probe and trap light that fit inside the medium. We choose
Zeonex as the material for the wave plate and model its
refractive index as a polynomial with known coefficients
[10]. Air will be the background material, with n0 = 1

Fixing the probe wavelength, the right hand side of equa-
tion (14) is a continuous function of the trap wavelength.
In order to be far from resonance, we will use a wavelength
between 760 and 770 nm, a range of frequencies which is
suitable for diode lasers. The value of this RHS is of the
order of 0.97-0.98 in the region of interest, so we need
to obtain values of the LHS that are close to these by
changing mt and mp.

FIG. 3: Value of the LHS of equation (14) with varying mt

and mp.

FIG. 4: Plots of the RHS of equation (14) and the LHS with
equal values m = mp = mt . The numbers indicate the value of

m for the line they are crossed by.

Given that the radius of the waveplate is comparable to
its length in the propagation direction (as scaled to improve
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numerical accuracy in the simulations), to minimize bound-
ary effects we should minimize the length of the feature in
the waveplate. We obtain this length by reorganizing (12,
13), which gives

z =
mpλp

(n(λp)− n0)
=

(mt + 0.5)λt
(n(λt)− n0)

(15)

The smaller mp or mt , the smaller the length of the feature
and the smaller will be the boundary effects.
If we choose mp annd mt to be the same, we can check

that the values of the LHS are within the range of the RHS
in the region of interest.
Given the probe wavelength, we chose a wavelength of

768.2373 nm. This corresponds to the 32nd order of both
lights, and gives us a length for the feature of 49.9354 µm.
Furthermore, there is another requirement: the powers

on the outside and the inside of the inner feature should be
equal to cancel out. We can compute that number using
simple integration in the 1D case: If we integrate symmet-
rically a Gaussian from the mean, what is the integrating
domain that will give us half of the full integral? Accord-
ing to our definition of Gaussian beam, the waist-waveplate
radius ratio should be γ = 0.4769. This will prove to be
slightly different in the simulations, probably due to the
effects of the feature boundaries in the waveplate.

IV. SPATIAL FREQUENCY DECOMPOSITION

In order to simulate the propagation of a Gaussian beam
through such a wave plate, we use the spatial frequency
decomposition method [11].
The method yields results that are similar to the

Rayleigh-Sommerfeld formula for a scalar field [12], but
it is more convenient as the propagation of the field E in
the half-space z > 0, is reduced to a simple multiplica-
tion in the spatial-frequency domain. The half space is
bounded by the plane of our initial condition, a complex
function E(0) ≡ E (x, y , 0).
We can obtain the angular spectrum of the initial con-

dition performing a two-dimensional Fourier transform:

A(0) ≡A(u, v , 0) = F [E] (u, v) (16)

=

∫ ∫
E(x, y , 0)e−i2π(ux+vy)dxdy (17)

This is the plane-wave decomposition in angular frequen-
cies of the original field.
Assuming E to be stationary, Maxwell’s equations give

rise to the Helmholtz equation for the field,

∇2E + k2E = 0, (18)

which describes the propagation of the field in space.

If we translate that equation for the angular spectrum,
we obtain:

d2A

dz2
+
(
k2 + k2x + k2y

)
A = 0, (19)

which has the solution

A(z) ≡ A(x, y , z) = H(z)A(x, y , 0), (20)

where the propagator

H(z) = e i
√
k2−k2x−k2y z (21)

appears as a multiplicative factor.
We can assume the paraxial approximation, as the waist

of our beam (several µm) when compared to the wave-
length (λ = 780 nm) gives a paraxiality estimator [13]
P ∼= 0.9, which is close to unity. Using this assumption,
the propagator reduces to

H(z) ≈ e ikze−i(+k2x+k2y )z/2k . (22)

As we are interested in the field, we then perform the
inverse Fourier transform, giving

E(z) = F−1 [A(z)] = F−1 [H(z)A(0)] (23)

= F−1 [H(z)F [E(0)]] (24)

.
An infinitely thin, diffractive mask with transmittance

function t(x, y), can be defined as

t(x, y) =
Eafter(x, y , z)

Ebefore(x, y , z)
, (25)

where Eafter and Ebefore are the field after- and before the
mask, respectively. We consider a medium with refractive
index n(x, y , z) as a set of flat layers with transmittance
functions that depend on the refractive index in that layer,

ti = ti [n(x, y , zi)] , (26)

where zi is the position of the i-th layer. Then, we model
the propagation as a sucession of free-space propagation
steps followed by the application of transmittance func-
tions.
We can take advantage of the Fast Fourier Transform

(FFT) routines available in most computing languages to
perform a simulation of this system.
In algorithmic language, this takes the form:

f o r each l a y e r ( i ) i n l a y e r s :
M u l t i p l y E0 by t r a n sm i t t a n c e : E=t ( i ) E0
F o u r i e r t r a n s f o rm : A=FFT (E)
Mu l t i p l y by p r o p aga t o r : A1=A H( dz )
I n v e r s e F o u r i e r t r a n s f o rm : Ef=iFFT (A1)
Set the i n i t i a l v a l u e : E0=Ef
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V RESULTS

V. RESULTS

I developed a program in Python [14] that uses the spa-
tial frequency decomposition method to test the propaga-
tion of a Gaussian beam through a custom wave plate.
The program gives qualitative results, given that the sim-

ulations were carried out in a 1D regime. The difference
between 1D and 2D simulations can be easily observed if
one consider the diffraction pattern due to a square slit
and a circular one: in the first one one obtains a sinc de-
pendence, whereas in the latter the cylindrical symmetry
gives rise to Bessel functions. It is, in principle, possi-
ble to obtain quantitative results on the propagation of a
cylindrically symmetric beam by reducing the 2D Fourier
transform to a Hankel transform of order zero [15].
The field and its domain are represented as one dimen-

sional arrays, perpendicular to the propagation direction.
The domain in this radial direction is characterized by
points that lie uniformly between the minimum and max-
imum limits, ρmin and ρmax , and the number of points nρ
determines the coarseness in this dimension,

∆ρ = ρmax − ρmin/nrho . (27)

One needs to be very careful with spatial aliasing in the
signal: Nyquist-Shannon theorem requires that the spatial
sampling must be finer than half of the minimum wave-
length appearing in the spectral decomposition of the sig-
nal. As we are dealing with a complex field with a wave-
length of 780nm, our points should be separated, at most,
by 390nm. It gives us an estimate of the minimum amount
of points that we need to take into account given the limits
of the domain. One then sees that simulations bigger than
a few mm can become intractable very fast.
We check the propagation through the waveplate and

observe that the central part of the trap beam undergoes
a π phase shift. As we can see in Figure 5, the edges of the
waveplate create disturbances in the beam as it propagates.
If we choose to propagate a beam with the wavelength of
the probe, the central part of the beam does not undergo
a phase shift; however, the ringing near the edges of the
feature persist, as shown in Figure 6.
In the case that the waveplate is close to a thin lens,

the Fourier transform of this function is proportional [11]
to the value of the field in the focus, f , of the lens. The
spatial scaling will be

x ′ = kρλf , (28)

where λ is the wavelength of the field and kρ is the spatial
frequency, measured in m−1. In Figure 7, where we have
performed the FFT on the field right after the waveplate,
we can see that the trapping potential (for a suitable set of
parameters) resembles a quartic polynomial near the axis

FIG. 5: The edges of the waveplate create disturbances in the
propagation of the otherwise Gaussian beam.

FIG. 6: Profiles of the electric field of the beams at the end of
the waveplate. In blue, the trap beam undergoes a π phase
shift in the central region and shows perturbances due to the
edges of the waveplate. In red, the probe beam shows no such

phase shift, but the effect of the edges is visible.

at the focal spot of a lens, whereas the probe beam fits
neatly between the maxima of the trapping potential.

The first thing to test is the size of the waveplate that
provides the maximum extinction in the center. We define
the extinction as the ratio between the power at the focus
and the power at the neighbouring maxima. If we assume
that the outer radius of the waveplate is comparable to
the waist, we can change both the inner (r1) and the outer
(r2) radii of the waveplate and obtain the conditions for
minima at the focus. In Figure 8 we can see that, when
we change r2 to be much greater than the other sizes, the
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waist-inner radius ratio γ that gives the maximum extinc-
tion is γ = 0.472, very close to the prediction using the
cumulative distribution function of a Gaussian. I assume
that the discrepancy between these two results, close to
1%, comes from the effects of the central feature bound-
aries on the propagation.

FIG. 7: These are the profiles of the powers at the focal point
of the lens. The profile of the trapping beam (blue) resembles

a quartic at the origin. The probe beam (red) is confined
within the peaks of the trapping potential.

FIG. 8: Shows different values of the waist to radius ratio (γ)
for different waveplate inner (r1) and outer (r2) radii with fixed

beam waist. The minima reaches an asymptotic value,
assuming r2 � r1, of γ = 0.472.

Using a refractive index n = 1.5 for both wavelengths
and the waveplate described above, a beam waist of σ =

10−4m and γ = 0.472, considering the transformation pro-
duced by a thin lens of focal f = 10 cm, we obtain an

extinction of η < 5 · 10−4.
It is possible to perform the propagation of the field

obtained at the focus, as we are interested in knowing the
longitudinal shape of the trap. But given that the results of
the 1D simulation do not follow the laws of propagation of
radially-symmetric, 2D beams, the results that we get are
meaningless in terms of scaling. Nonetheless, performing
such simulation we can obtain qualitative results about the
shape of the trap. Using an unrealistic 0.1mm lens, we see
in Figure beam evolves into a shape that creates a potential
along all directions. The smallest barrier corresponds to
about 25% of the maximum height, and occurs along the
diagonals.

FIG. 9: We can obtain qualitative results about the shape of
the trap propagating the result of the FFT. It shows that

potential effectively traps the particles in the minimum, being
the smallest trapping height that of potential along the

diagonals.

VI. DISCUSSION

When discussing the results outlined above one needs to
bear in mind that the simulations we have performed hold
only for the 1D case.
On the computational side, the amount of points that

define our potential after we have performed the FFT de-
pend on the ratio between the size of the window and the
size of the initial Gaussian: the FFT will transform big
features (with respect to the window size) into small fea-
tures and vice versa. This causes troubles when we need
to consider milimetre-sized simulations: we need to have
a resolution high enough to satisfy Nyquist-Shannon theo-
rem and, at the same time, the window needs to be so big
that the resolution in the FFT plane satisfies those condi-
tions as well. The number of points to work with lies on

David Paredes Barato
Waveplate design report.

7



VI DISCUSSION

the range N ≈ 104 − 106. A single FFT of an array with
223 ∼ 107 elements takes about a minute to run on a Pen-
tium IV at 3GHz. That makes 2D simulations unfeasible
at those scales using a single processor, where we need to
consider matrices with N2 complex elements. A possible
solution might be to use the Hankel transform, as stated
in the previous section, to obtain the correct spread of the
profile of the beam as it propagates in space, but this has
not been implemented yet.
In our experiment, we need the atoms to absorb the

probe to block it completely; that is, that the optical depth
of our sample must be as high as possible. If we take a look
at Figure 6, we see that the probe beam fits neatly between
the two maxima of the trapping beam. This situation is
not entirely satisfactory: the trapping region will actually
be smaller than the region bounded by the two maxima -

about one third of the distance, as a rule of thumb. In this
case, the atoms will not be able to block completely the
power from the probe beam, thereby reducing the maxi-
mum absorption that we can obtain from our system. The
ideal case would be where the waist of the probe beam is
about 3 or 4 times smaller than the distance between the
peaks. Therefore, this system is, at this stage, not suitable
for our experiment, as any spurious transmission can mask
the effect we are trying to measure.
Finally, even though the system described in this report

is not suitable for our purposes, it might be interesting to
try it in a system where the signal to noise ratio is not so
critical. The compact solution provided by this waveplate
could reduce the size of an apparatus that requires trapping
and probing simultaneously. For example, one can think of
portable aerosol trapping and probing.
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